
Keyboard Access Functional Specification, RC2
Earl Johnson

Chair
Sun Microsystems, Inc.

Bill Haneman
Sun Microsystems, Inc.

Mark Novak
University of Wisconsin, Madison

Willie Walker
Sun Microsystems, Inc.

Revision History
Revision RC2 25 October 2006 Revised by: wph
Incorporated comments and corrections from Olaf and Gunnar Schmidt and made corrections to some parameters.
Revision RC1 15 November 2005 Revised by: ej
Did a final readability review.
Revision 0.75 15 October 2005 Revised by: ej
Factored in input from FSGA. Added "visual bell" to section 7 of table 1, added a note identifying where a difference from common practice has occured. Made edits of suggested edits; split the test assertions out into a separate doc.
Revision 0.7 21 June 2005 Revised by: ej
Made edits of suggested edits; split the test assertions out into a separate doc.
Revision 0.61 22 May 2005 Revised by: ej
Add more test assertions, includes table 2 assertions now
Revision 0.6 14 May 2005 Revised by: ej
Add more test assertions, reformat table one assertions
Revision 0.5 09 Mar 2005 Revised by: wdw
Add manual assertion examples for discussion
Revision 0.1 17 Feb 2005 Revised by: wdw
Convert to DocBook

Table of Contents
What This Specification Defines..3
Scope ...4
Functional Specification ..4

What This Specification Defines
This functional specification defines the minimum level of keyboard accessibility
support and notification that must be provided to the user by an FSG Certified X Win-
dowing System. This support ensures that users with a variety of physical disabilities
will always have a basic level of access to the windowing system’s core functions -
keyboard input and controlling the system pointer (where available).

The features in this specification are largely dependent on support provided at the
operating system level of the platform. This functional specification covers the 3 areas
described below:

• "Configuration and Setting Requirements" enumerates the features and associated
controls, configurability, and minimum ranges provided to the user.

• ""End-User Notification, Keyboard Invocation, and Pointer Emulation Require-
ments" enumerates the additional notification and controllability a platform must
support in the user interface developed to meet the above section’s requirements.

• "Feature Behavior Requirements" describes the type of behavior that must occur
when the functionality of a keyboard access feature is exercised.

Limitations
The features and range of support prescribed in this document should not be taken
as state-of-the-art, nor do they constitute the current best available practice.

Compliance with this specification is necessary, but not sufficient, for supporting ad-
equate end-user keyboard access to the desktop environment. Meaningful end-user
access to the desktop environment, and the applications hosted thereon requires that
those applications are designed with keyboard access in mind; conformance of an
operating environment to this specification does not imply that such applications are
themselves accessible.

Features
The features defined in this specification provide the user with the following type of
support:

• StickyKeys: Enables the user to keep the Control, Shift, Alt, or other modifier keys
temporarily latched or locked while other keys are pressed in a sequential rather
than a simultaneous fashion. This enables the user to correctly type capital letters,
Control-C, Alt-M, Alt-Control-Backspace, and much more. Target users are people
who can’t press more than one key at a time, someone who uses a mouth-held stick
for example.

• MouseKeys: Enables a group of keys to emulate a pointing device when present.
Pressing keys in this group will move the pointer around the screen and perform
associated pointer button actions (e.g., double-clicking). Target users are people
who can’t use or move a pointing device (e.g. a mouse) or operate its buttons.

• RepeatKeys: Enables the user to control various auto-repeat parameters of keys
when they press. Target users are people who have trouble releasing a key before
it starts to repeat.

• SlowKeys: Enables users to control the amount of time a key must be pressed before
the system sends a key press event to the active application or tool. Target users are
those who accidently press more than one key when they when interacting with
the platform’s.

• BounceKeys: Enables the user to introduce a delay time between keystrokes during
which the system will not acknowledge repeated key presses of the same key. Tar-

3

Keyboard Access Functional Specification, RC2

get users are people whose tremors cause them to unintentionally bounce on, or
repeatedly press and release the same key.

• ToggleKeys: ToggleKeys notifies users when they have locked or unlocked a locking
key on the keyboard [e.g., Caps Lock]. Target users are people with reduced or no
sight.

Scope
This functional specification defines the support that must be built into the system.
The capabilities provided by the features in it define the pointer based events and
capabilities that must be emulated by the system as well as how the system should
interpret and process a user’s keypresses. For the most part, defining and/or spec-
ifying the exact user interfac[s] these features are presented in is beyond the scope
of this specification. The one exception area is keyboard shortcuts that are already
considered de facto standards. These shortcuts are explicitly defined in the second
table ("End-User Notification and Keyboard Invocation Requirements"). Specifying
the keysequences for how a user controls and interacts the desktop and its contents,
e.g. Control-C is Copy, is also outside the scope of this specification.

An exact set of test assertions for the user interface cannot be provided in this docu-
ment because it does not prescribe what the user interface must look like. It is left to
others, most likely the platform provider, to develop their own set of assertions for
testing their specific implementation against this functional specification. The com-
panion "Generic Test Assertions for Manual Testing", which identifies how to test for
compliance with this specification, was developed to address this limitation. A third
document that will be produced, the "XKB’s Keyboard Access Support Specification",
provides the first free software based implementation of this specification off which
many platforms have based their keyboard access implementation.

Functional Specification

Configuration and Setting Requirements
This section identifies the configurable functionality each feature must make avail-
able to the user, the controls associated with the defined functionality, and the re-
quired ranges that must be supported in variable controls. It is important to note that
the ranges associated with a variable type control are the minimum that must be sup-
ported; it is acceptable to provide a superset of these ranges, i.e. to support a wider
range of settings than the minimum specified below. It is also acceptable to provide
finer granularity, linear or non-linear, than that specified herein as long as the val-
ues defined below are supported. Unless otherwise noted, sub-features of features
with a primary boolean control are only required to be available to the user when
the primary boolean control has a value of "true". For instance, feature 1.3 need not
be available to the end user unless 1.1 (the StickyKeys boolean) is "true". However,
exposing these options in the user interface while the control is "false" should not in
itself be deemed a conformance failure.

Table 1. Configuration and Setting Requirements

Feature Functionality Type of
Control

Option’s
Variable
Ranges

1. StickyKeys 1.1. Turn
StickyKeys on/off.

Boolean N/A

4

Keyboard Access Functional Specification, RC2

Feature Functionality Type of
Control

Option’s
Variable
Ranges

1.2. Press modifier
key twice to lock.

Boolean N/A

1.3. Turn
StickyKeys off
when two keys are
pressed
simultaneously.

Boolean N/A

1.4. Provide the
ability to request
an audible signal
when a modifier is
latched, locked, or
unlocked.

Boolean N/A

2. MouseKeys 2.1. Turn
MouseKeys on/off.

Boolean N/A

2.2. Delay before
the acceleration
that follows the
initial step starts.

Variable Acceleration start
delay: 1-1000 ms
Required
adjustment
granularity at low
end of range: 10
ms.

2.3. Initial pointer
velocity/repeat
interval.

Variable Initial velocity:
1-200 pixels/sec
Required
adjustment
granularity at low
end of range: 2
pixel/sec. Note: this
may be exposed as
either a velocity in
pixels/sec or a repeat
interval between
succesive pointer
motions (if the step
size is also exposed).

2.4. Delay till the
pointer reaches
maximum speed.

Variable Time to reach full
acceleration:
100-10000 ms
Required
adjustment
granularity at low
end of range: 200
ms.

2.5. Maximum
pointer speed, in
pixels/sec. May
alternatively be
exposed as a repeat
interval with range
1-1000 ms and
granularity 1 ms.

Variable Maximum speed:
1-2000 pixels/sec
Required
adjustment
granularity at low
end of range: 10
pixel/sec.

5

Keyboard Access Functional Specification, RC2

Feature Functionality Type of
Control

Option’s
Variable
Ranges

3. RepeatKeys 3.1. Turn
RepeatKeys on/off

Boolean N/A

3.2. Repeat
delay

Variable Range: 0.10 to
5.0 seconds
Required
adjustment
granularity at
low end of
range: 0.1
seconds.

3.3. Repeat rate Variable Range: 0.2
charac-
ters/second
(i.e. 1 character
takes 50
seconds) to 10
charac-
ters/second.
Required
adjustment
granularity at
low end of
range: 0.3 char-
acters/second.

4. SlowKeys 4.1. Turn
SlowKeys
on/off.

Boolean N/A

4.2. Provide the
ability to
request an
audible signal
when
SlowKeys is
about to be
turned on/off
via the
keyboard.

Boolean N/A

4.3. Provide the
ability to
request an
audible signal
when a key is
pressed.

Boolean N/A

4.4. Provide the
ability to
request an
audible signal
when a key is
accepted.

Boolean N/A

6

Keyboard Access Functional Specification, RC2

Feature Functionality Type of
Control

Option’s
Variable
Ranges

4.5. Provide the
ability to
request an
audible signal
when a key is
rejected.

Boolean N/A

4.6. Acceptance
delay.

Variable Range: 0.05-10
seconds
Required
adjustment
granularity at
low end of
range: 0.25
seconds.

5. BounceKeys 5.1. Turn
BounceKeys
on/off.

Boolean N/A

5.2. Provide the
ability to
request an
audible signal
when a key is
rejected.

Boolean N/A

5.3. Debounce
time.

Variable Range: 0.1-5
seconds
Required
adjustment
granularity at
low end of
range: 0.1
seconds.

6. ToggleKeys 6.1. Turn
ToggleKeys
on/off.

Boolean N/A

7. Supporting
Features

7.1. Provide a
means of
requesting a
warning dialog
any time the
SlowKeys or
StickyKeys
feature is
invoked from
the keyboard.

Boolean N/A

7

Keyboard Access Functional Specification, RC2

Feature Functionality Type of
Control

Option’s
Variable
Ranges

7.2. Provide an
option for
requesting an
audible signal
when a
Keyboard
Access feature
is turned
on/off from
the keyboard.

Boolean N/A

7.3. Provide a
visual
indication
showing when
the system
generates an
audible (’bell’)
signal.

Boolean N/A

7.4. Provide a
means of
enabling the
keyboard
shortcuts for
StickyKeys and
SlowKeys to be
turned on/off;
turning this
functionality
off turns the
features off
and disables
the keyboard
shortcutsa.

Boolean N/A

8

Keyboard Access Functional Specification, RC2

Feature Functionality Type of
Control

Option’s
Variable
Ranges

7.5. Provide a
time-out
option that
turns
StickyKeys and
SlowKeys off
automatically
after a
specified
period of time
without
keyboard
activity; it still
must be
possible to
turn
StickyKeys or
SlowKeys on
from the
keyboard
when this
feature is
turned ona>.

Variable Never
TimeOut then
Range: 1 to 30
minutes.
Required
adjustment
granularity at
low end of
range: 4
minutes.

7.6. Provide a
never time out
option for
StickyKeys and
SlowKeysa>.

Optional Never time
out.

Notes:
a. Common practice today is this functionality turns off all the
keyboard access features. This specification only requires that this
boolean control affect the SlowKeys and StickyKeys features, in
line with what the XKB specification in the X Windows System
provides.

End-User Notification, Keyboard Invocation, and Pointer
Emulation Requirements
This section describes the notifications that must be provided the user when specified
changes to keyboard state occur - these include visual and audio notifications that are
not already implicitly defined in Table 1.

Table 2. End-User Notification, Keyboard Invocation, and Pointer Emulation Re-
quirements

General Requirement Feature Functionality Required

1. Provide a visual
indication showing the
state of keys and buttons.

1.1.
StickyKeys

1.1.1. Indicate when StickyKeys is on.

1.1.2. Indicate when a modifier(s) is in a
latched state.

1.1.3. Indicate when a modifier(s) is in a
locked state.

9

Keyboard Access Functional Specification, RC2

General Requirement Feature Functionality Required
1.2.
MouseKeys

1.2.1. Indicate when MouseKeys is on.

1.2.2. Indicate which pointer button is
active.

1.2.3. Indicate when the active pointer
button is up or down.

1.3.
SlowKeys

1.3.1. Indicate when SlowKeys is on.

1.3.2. Indicate when a key is pressed.

1.3.3. Indicate when a key press is
accepted.

1.3.4. Indicate when a key press is
rejected.

2. Provide a keyboard
on/off guesture.

2.1.
StickyKeys

2.1.1. Provide the ability to toggle
StickyKeys on and off from the
keyboard. On systems that utilize a
keyboard: press Shift key 5 consecutive
times.

2.2.
MouseKeys

2.2.1. Provide the ability to toggle
MouseKeys on and off from the
keyboard on systems that utilize a
pointing device.

2.3.
SlowKeys

2.3.1. Provide the ability to toggle
SlowKeys on and off from the keyboard.
On systems that utilize a keyboard: hold
down the Shift key for 8 seconds.

3. Provide an audible
signal that indicates when
a keyboard access feature
or feature functionality
has changed state.

3.1. General 3.1.1. Each keyboard access feature must
provide an audible signal when it is
turned on or off.

3.1.2. The signal that is generated when
a keyboard access feature has been
turned on or off must be the same as
that used on the other keyboard access
features.

3.1.3. A keyboard access feature’s "On"
audible signal must be different from its
"Off" audible signal.

3.1.4. Functionality in a keyboard access
feature that essentially turns something
On or Off should use an audible signal
with a timbre similar to the one
generated when a keyboard acess
feature is turned "On" or "Off".

3.2.
StickyKeys

3.2.1. Provide an audible signal when a
modifier is latched.

3.2.2. Provide an audible signal when a
modifier is locked.

3.2.3 Provide an audible signal when a
modifier is unlatched or unlocked.

10

Keyboard Access Functional Specification, RC2

General Requirement Feature Functionality Required
3.3.
SlowKeys

3.3.1. Provide an audible signal when
SlowKeys is about to be turned on/off
via the keyboard.

3.3.2. Provide an audible signal when a
key is pressed.

3.3.3. Provide an audible signal when a
key is accepted.

3.3.4. Provide an audible signal when a
key is rejected.

3.4.
BounceKeys

3.4.1. Provide an audible signal when a
key is rejected.

3.5.
ToggleKeys

3.5.1. Provide an audible signal when a
locking key is locked or unlocked.

4. For systems with a
pointing device, provide
the ability to manipulate
the pointer from the
keyboard.

4.1.
MouseKeys

4.1.1. Move the pointer via key press.

4.1.2. Activate the active mouse button
via a key press (e.g., single and double
click).

4.1.3. Change the active mouse button
via a key press.

4.1.4. Hold down a pointer button via a
keypress.

4.1.5. If the system supports multiple
pointer buttons, allow multiple pointer
buttons to be pressed at the same time.

Feature Behavior Requirements
The following subsections provides more detailed descriptions of how the various
keyboard access features and functionality should operate from a user interaction
standpoint.

StickyKeys
Some users are unable to physically press more than one key at a time. With Stick-
yKeys, the user can first press a modifier key, release it, and then press another key.
For example, to get an exclamation point on a US QWERTY keyboard, the user can
press the "Shift" key, release it, and then press the "1" key.

StickyKeys is required for systems that have a keyboard that requires the user to
press more than one key at a time. When StickyKeys is enabled, the keyboard must
behave as follows:

• When the user physically presses and releases a modifier key, the modifier logically
latches ("sticks") down even though the user has released the modifier key.

The modifier will stay in this latched state until a non-modifier key has been
pressed. When a non-modifier key has been pressed, the latched modifier key(s)
will automatically unlatch and will revert to the unmodified state when the
non-modifier key is released. The net effect is as if the user were holding the
modifier key(s) down in conjunction with the non-modifier key.

11

Keyboard Access Functional Specification, RC2

• A user may latch more than one modifier at a time by pressing any number of
unique modifier keys before pressing a non-modifier key.

• A user may lock a modifier by pressing/releasing the modifier key twice in a row.

When a modifier is locked, it is as though it has been permanently latched and
will not be automatically unlatched when a non-modifier key has been pressed. To
unlock a modifier, the user must press the modifier key a third time, which places
the modifier in an unlatched and unlocked state.

• A user may lock more than one modifier at a time.

• Any latched or locked modifiers will also be used in conjunction with pointer events.

• Pressing pointer buttons will result in the same behavior as pressing a
non-modifier key.

MouseKeys
Some users are able to use a keyboard but are unable to use devices such as a mouse
or trackball. MouseKeys permits the user to emulate the pointer and its functionality
from the keyboard.

When MouseKeys is enabled, the system must behave as follows:

• When the user presses and holds a key for moving the pointer’s cursor, the cursor
will move slowly at first and then accelerate based upon the configuration settings
listed in Table 1. When the user releases the key, the cursor will stop immediately.

• When the user presses a key for selecting the "active" pointer’s button, no input
events will be generated. Instead, the key will set the button to be used for the
button actions described below.

• When the user presses the key for performing a single-click action, the system will
generate a button click (i.e., a sequential button press and release events) using the
current "active" button (see above).

• When the user presses the key for performing a double-click action, the system will
generate a button double-click (i.e. sequential button press, release, press, release
events) using the current "active" button (see above).

• When the user presses the key for holding down a button, the system will generate
a button press event using the current "active" button (see above). The button will
remain logically pressed even when the user releases the key. Following this action,
the user may use other keys to move the pointer cursor so as to perform a drag
operation.

• When the user presses the key for releasing a button, the system will generate a
button release event using the current "active" button (see above).

• More than one pointer button can be logically pressed at a time.

RepeatKeys
RepeatKeys is of primary use to users who have difficulty removing their fingers
from keys before the auto-repeat behavior is activated. RepeatKeys is required for
systems that provide an auto-repeat behavior. When RepeatKeys is enabled, the auto-
repeat behavior is identical to the normal auto-repeat behavior of the system, but the
system will use the repeat delay and repeat rate timings described in Table 1.

12

Keyboard Access Functional Specification, RC2

SlowKeys
SlowKeys enables users who regularly hit multiple keys by accident while typing.
SlowKeys does so by requiring the user to press and hold a key for a period of time
(the SlowKeys "acceptance delay" described in Table 1) before the key is accepted,
and is required on systems that provide a keyboard.

When SlowKeys is activated, the user must press and hold a key for the "acceptance
delay" period of time before it is accepted. Once the key is accepted, if the user con-
tinues to hold the key, the RepeatKeys settings will be used to handle the auto-repeat
behavior. If the user releases a key before the "acceptance delay," the system will treat
the press/release as though they never happened.

BounceKeys
BounceKeys requires a delay (the "debounce time") between keystrokes before ac-
cepting the next press of the same key, and is typically used by users with tremors
to prevent inadvertent keypresses. BounceKeys is required on systems that provide
a keyboard.

When BounceKeys is enabled, the first press of a key will be immediately accepted
by the system. When the user releases the key, they must wait for the "debounce
time"to be met before pressing that same key again. If the user presses the key before
the "debounce time" has expired, that key press/release will be ignored. Note that
the "debounce time" only applies to the last key released - that is, if a user presses a
different key immediately after releasing a key, that different key will be accepted.

ToggleKeys
ToggleKeys notifies users when they have locked and unlocked a "self locking" key
on the keyboard. Target users are people with reduced or no sight. Examples of "self
locking" keys include the "Caps Lock," "Num Lock," and "Scroll Lock" keys.

When ToggleKeys is enabled, the system will provide the user with audible notifi-
cation when a self locking key is locked or unlocked, preferably with unique signals
that indicate whether the key has become locked or unlocked. Note that there is a dis-
tinction between keys that are locked/unlocked via StickyKeys and self locking keys.
StickyKeys is used for keys that are not self locking. As such, when a key is locked or
unlocked via StickyKeys, ToggleKeys should not provide audible notification of the
event.

13

Keyboard Access Functional Specification, RC2

14

	Table of Contents
	What This Specification Defines
	Limitations
	Features

	Scope
	Functional Specification
	Configuration and Setting Requirements
	EndUser Notification, Keyboard Invocation, and Pointer Emulation Requirements
	Feature Behavior Requirements
	StickyKeys
	MouseKeys
	RepeatKeys
	SlowKeys
	BounceKeys
	ToggleKeys

